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Thermal Decomposition of 
c/s-Tetrahydropyridazine-3,4-d2- Relative Rates of 
Rotation, Cleavage, and Closure for Tetramethylene 

Sir: 

The only 1,4 biradical described by theorists1 to date is 
tetramethylene. Despite the fact that substantial experimental 
work now exists on 1,4-biradical behavior,3-8 the relative rates 
of rotation, cleavage, and closure of the parent system are 
unknown. Substituted tetrahydropyridazines have been shown 
to be excellent sources for the thermal generation of stereo-
specifically labeled 1,4 biradicals.5 Application of this method 
to the tetramethylene problem provides an opportunity for the 
direct comparison of experiment and theory. 

We report the stereospecific synthesis and thermal decom
position in the gas phase (439 0C) of c/s-tetrahydropyrid-
azine-5,4-^2 (2). In addition, we describe the stereospecific 
syntheses of cis- and 7ra«i'-cyclobutane-/,2-^2 (3 and 4). 
Analyses of the cis/trans stereochemistry in the products from 
the decomposition of 2 allow an experimental determination 
of the relative rates of rotation, cleavage, and closure for tet
ramethylene. Moreover, a stereospecific cleavage reaction to 
ethylene and nitrogen in competition with a 1,4-biradical 
pathway from the thermal decomposition of tetrahydropyr-
idazine becomes evident. 

Synthesis of «'.j-tetrahydropyridazine-5,4-d2 (2) was ac
complished as shown in Scheme I.9 For pyrolyses, a solution 
of 2 in benzene-^6 was injected into an evacuated Pyrex 
chamber (439 0 C) and the products were collected in a trap 
a t - 1 9 6 0 C. 

The ratio of the two ethylenes to cyclobutane was 83:17 from 
analytical VPC analysis.I0 These products were separated by 
preparative VPC for infrared analyses of their respective 
cis/trans-^2 ratios." The observed cis/trans-ethy\ene-l ,2-d2 

ratio from the pyrolysis of 2, obtained by comparison with 
authentic mixtures,12 is 80:20.13 

The syntheses of cis- and ?ra/M-cyclobutane-/,2-^2 are 
shown in Scheme II.14 '15 The ratio of cis/trans-cyclobul&ne-
l,2-d2 products from the pyrolysis of 2 was determined by 
measuring the relative ratio of the 1307 (cis-1,2-d2) and 1294 
cm"1 (trans-1,2-^2) bands in the infrared and comparing these 
with those of authentic mixtures. The c«-tetrahydropyrida-
z\nc-3,4-d2 (2) contains 93% d2 and 7% d\. Since cyclobu-
tane-rfi has a band at 1307, calibration mixtures contained 93% 
cis,trans-1,2-^2 and 7% cyclobutane-fif). The observed cisj 
?ra«5-cyclobutane-/,2-^2 ratio from the pyrolysis of 2 obtained 
by comparison with authentic mixtures is 56:44. 

A summary of the stereochemical results from the thermal 
decomposition of c/j--tetrahydropyridazine-5,4-^2 (2) is shown 
in Scheme III.18 By analogy to previously described decom
position pathways for cis- and rrtf«s-3,4-dimethyltetrahy-
dropyridazines,5d'e consider Scheme IV.19-20 

The ratio of k(cleavage)jk(closure) can be obtained di
rectly. From 2, the ratio of crossover products, ?/-a«.y-ethyl-
ene-/,2-^2-'?'w«-cyclobutane-/,2-af2 is equal to the ratio of 
the rates for cleavage and closure in the unimolecular de-
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composition of biradical T. From Scheme III, ^ (c losure) / 
/c3(cleavage) = 7.5:16.6 = 0.45. This /c(closure)/£(cleavage) 
ratio (R\) and the ratio of cis-jtrans-cyc\obutane-l,2-d2 (R2) 
allow a determination of the /:(closure)/&(rotation) ratio, 
k2jk), from a simple steady-state analysis of the proposed 
diradical scheme, i.e., k2/k] = (R2R] - R])J(R1 + 1). From 
the data, R] = 0.45 and R2 = 1.27, we calculate k2jkx -
0.083. The experimental ratio of «'s-ethylene-/,2-^2/^5-
cyclobutane-/,2-rf2 is 66.4:9.52. From k3/k2, the amount of 
cis-ethylene-1,2-d2 expected from C should be 2.22 times the 
cw-cyclobutane-7,2-^2 observed (9.52 X 2.22 = 21.1%). 
Therefore the extra stereospecific component of ci's-ethyl-
ene-l,2-d2 is 66.4 - 21.1 = 45.3%. 

In summary, we find that, in the thermal decomposition of 
unsubstituted six-membered cyclic 1,2-diazenes at 439 0 C in 
the gas phase, 55% proceeds via tetramethylene, and 45% 
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proceeds via a stereospecific olefin-forming pathway.21 Tet-
ramethylene-^2 generated from a 1,2-diazene decomposition23 

has the properties /:(cleavage)/&(closure) = 2.2 and A:(rota-
tion)/£(closure) = 12.2-s 
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Molecular Recognition of Nucleic Acid by Small 
Molecules. Binding Affinity and Structural Specificity of 
Bis(methidium)spermine 

Sir: 

Nucleic acids are biologically important receptors suffi
ciently characterized to encourage the syntheses of site specific 
probes. Molecules capable of binding to nucleic acid templates 
and interfering with processes in which nucleic acids partici
pate are important in both antibiotic and cancer chemother-

98, apy.1 Some drugs bind to nucleic acids by intercalation, the 
insertion of a flat molecule between the base pairs of a double 
helix.2 In the absence of unfavorable entropic or steric con

straints, an increase in binding affinity and sequence specificity 
would be expected for polyintercalators3 which are capable of 
inserting two or more intercalating units into the nucleic acid 
double helix. 

We report the quantitative determination of the nucleic acid 
binding affinity and specificity which result when two inter
calating monomers of ethidium bromide (EB),4 connected by 
a spermine5 link, are incorporated into the same molecule, 
bis(methidium)spermine (BMSp).3f The results presented in 
this paper clearly demonstrate that dimers constructed from 

CH 2 CH 3 

EB 

BMSp 

two intercalating monomers can bind nucleic acids with a free 
energy approaching the sum of the free energies of the mono-
meric constituents resulting in substantial increases in both 
binding affinity and specificity. 

BMSp (a) has a binding site size which is always twice that 
of EB,3f'6 (b) increases the length of double helical DNA 1.6 
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